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Abstract

The significance of microbes for ecosystem functioning is well known; however, within a single system, the
relative contributions of keystone and rare taxa to soil microbial functions are less well quantified, as are
their shared or unique responses to abiotic conditions. Furthermore, their associations with tree community
composition in natural forest ecosystems are not well understood. In this study, a total of 1287 soil samples
were collected from a 20-ha subtropical forest plot and analyzed using high-throughput sequencing. Based on
co-occurrence network analyses, we conducted a comparison of the associations between keystone and rare
taxa with the structure, functions and stability of soil microbial communities. Additionally, we examined their
associations with tree community composition. Results showed that keystone taxa made a significantly greater
contribution than rare taxa in all comparisons of microbial functions and stability. Keystone taxa had direct
effects on microbial community structure and also mediated indirect effects of abiotic conditions. Neither effect
was evident for rare taxa. The importance of keystone taxa also extended to aboveground composition, where
tree community composition was more closely associated with keystone taxa than with rare taxa. While it may
still be premature to establish causality, our study represents one of the initial attempts to compare the relative
importance of keystone and rare microbial taxa in forest soils. These findings offer the potential to improve
natural forest ecosystem functioning and tree diversity through the manipulation of a small number of keystone
soil microbial taxa, as has been demonstrated in agroecosystems.
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INTRODUCTION

Soil microbes are ubiquitous and indispensable
ecosystem components (Xun et al. 2021) that are
critical for ecosystem functioning (Bardgett and van
der Putten 2014). In forest ecosystems, soil microbes
also shape aboveground patterns of tree biodiversity
through their influence on plant growth and
community assembly (Hannula et al. 2021). Much
research has sought to understand how highly diverse
soil microbial communities regulate ecosystem
structure and functions (Bardgett and van der Putten
2014). This has identified disproportionately high
contributions to community structure and ecosystem
functions made by both keystone and rare microbial
taxa (Banerjee etal. 2018; Chenetal. 2020; Herren and
McMahon 2018; Lynch and Neufeld 2015; Pester et
al. 2010; Xiong et al. 2021; Xun et al. 2021). However,
individual studies have tended to either focus solely
on keystone taxa or compare abundant and rare taxa
without differentiating keystone taxa. Even within
a single ecological context, the relative importance
of keystone and rare taxa for ecosystem functioning
remains uncertain. Moreover, the role of abiotic
conditions in structuring these critical components
of soil microbial diversity is not well understood
either. Such understanding could provide a more
holistic view of the role of soil microbial diversity in
ecosystem functioning, potentially informing new
management interventions.

As ‘ecosystem engineers’ (Banerjee et al. 2018;
Mills et al. 1993; Yue et al. 2019), keystone taxa
are highly connected within the microbiome. By
definition, keystone taxa have a huge impact on the

structure and function of microbiome, regardless of
their abundance across space and time (Banerjee
et al. 2018; Lynch and Neufeld 2015; Paine 1995).
Given their importance in soils, microbial keystone
taxa have been extensively studied in agricultural
ecosystems (Banerjee et al. 2019; Shi et al. 2020), for
their roles in supporting ecosystem functions (Shi
et al. 2020), maintaining soil microbiome stability
and generalist metabolism (Fan et al. 2018; Xun et
al. 2021), predicting nitrogen-cycling processes
(Dai et al. 2021; Yue et al. 2019) and protecting
crops against pathogens (Trivedi et al. 2017).
The association between soil keystone taxa and
agricultural production has been an important line
of research (Banerjee et al. 2019), enabling their
use to improve crop productivity (Wang ef al. 2022;
e.g. by adding the screened keystone taxa to the
soil as biofertilizers; Fan et al. 2021). In contrast to
agricultural systems, however, the role of keystone
taxa in forest ecosystems remains largely unknown,
despite considerable research on soil microbes
(Barberdn et al. 2015; Chen et al. 2019; Lladé et al.
2017). If microbial keystone taxa were found to
have an influence on soil and tree communities, it
would be reasonable to assume that the promotion
of ecosystem functioning in natural forests could
potentially be achieved by regulating keystone soil
microbes, similar to successful approaches applied in
agroecosystems (Wang et al. 2022; Zheng et al. 2021).

As with keystone taxa, numerous studies have
revealed that the contributions of rare taxa to
ecosystem services are disproportionate to their
abundance (Jia et al. 2018; Pester et al. 2010;
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Yang 2021). Indeed, the importance of rare taxa
in performing keystone-like roles in microbial
co-occurrence networks and community structure
is increasingly recognized (Lynch and Neufeld 2015;
Ramirez et al. 2018; Xiong et al. 2021). Additionally,
the large number of species found with very low
abundances in most microbial communities (Pedrds-
Ali6 2012; Xiong et al. 2021) collectively provide a
reservoir of genetic traits associated with a wide
range of ecosystem functions (Elshahed et al. 2008;
Pascoal et al. 2021). This creates the potential for
rare taxa to rapidly respond to environmental
perturbation (e.g. conditionally rare taxa; Shade
et al. 2014), thus providing resilience in ecosystem
functioning (Pascoal ef al. 2021) and explaining the
disproportionately high contribution of rare taxa in
driving ecosystem multifunctionality (Chen et al
2020). Specific examples of the importance of rare
microbial taxa include maintaining the stability
of mycobiome networks (Xiong et al. 2021) and
mediating the negative impacts of land degradation
on ecosystem functioning (Wu et al. 2021).

Since both keystone and rare taxa have been
associated with disproportionate contributions to
soil microbial community structure, functions and
stability, their relative abundances do not truly
reflect their importance (Banerjee ef al. 2018; Lynch
and Neufeld 2015). Thus, the shared importance
and, in some cases, overlapping roles of keystone
and rare microbial taxa raise questions about their
relative contributions and how they assemble into
communities within a single ecological system. This
is of particular interest in natural ecosystems, rather
than agricultural ones, where relative abundances
also reflect minimal anthropogenic impacts, such as
soil disturbance or nutrient addition.

In this study, we collected 1287 soil samples
from a 20-ha stem-mapped subtropical forest plot
to analyze the network structure of soil bacterial
and fungal communities. Our main interest was
in comparing the relative influence of keystone
and rare microbes on microbial community
functions and stability, their respective sensitivities
to abiotic conditions and their relationships with
aboveground (tree community) composition. Given
the strong influence of abiotic factors on keystone
taxa (Resetarits et al. 2018; Yang et al. 2020) and the
lesser influence on rare taxa (Ramirez et al. 2018),
it was expected that there was a closer association
between keystone taxa and abiotic (soil and
topographic) factors. Specifically, we hypothesized
that (i) the community structure of keystone taxa

would be more strongly associated with abiotic
(soil and topographic) factors than that of rare
taxa, which would result in a greater association
with aboveground composition; (ii) both keystone
and rare taxa would contribute substantially to
ecosystem functioning, but the former would
dominate through their known linkages with biotic
and abiotic factors; and that (iii) the high richness
of rare taxa would enable them to make greater
contributions to community stability. However, we
found that keystone taxa dominated all comparisons,
suggesting that rare taxa play a relatively limited
role in this natural forest.

MATERIALS AND METHODS

Study site and soil sampling

The study site is located at Tiantong National Field
Observation Station for Forest Ecosystems (29°48’
N, 121°47" E), which is a representative subtropical
evergreen broadleaved forest in Zhejiang Province,
East China. The study region has a subtropical
monsoon climate with humid, hot summers and
dry, cold winters (Zhou et al. 2020). The mean
annual precipitation is 1374 mm, and the mean
annual temperature is 16.2 °C (Hu et al. 2020). The
soil has a clay loam texture with 6.8% sand, 55.5%
silt and 37.7% clay (Zhou et al. 2020). Common
tree species include Castanopsis fargesii Franch.,
Schima superba Gardn and Castanopsis carlesii
(Hemsl.) Hayata (Hu et al. 2020). The studied
forest plot was established in 2008 as part of the
Forest Global Earth Observatory network (https://
forestgeo.si.edu/) and covered a total area of 20
ha (500 m x 400 m) (Qiao et al. 2020). The plot
topographic data (elevation, slope and convexity)
were collected and converted into topographic
data for each sampling point using the Kriging
interpolation method.

In 2018, we collected a total of 1287 soil samples over
the 20-ha study area using a gridded sampling design
(Supplementary Fig. S1; Wu et al. 2024). Following
the criterion for soil sample collection established by
the Center for Tropical Forest Sciences (John et al.
2007), we selected the intersections of each quadrat
as the base sampling points and chose two additional
sampling points randomly positioned 2, 5 or 8 m away
from 70% of the base points in each selected direction.
After removing surface litter and the organic layer, we
took four soil cores from the mineral layer (0-10 cm
depth) using a soil auger with a 10-cm inner diameter
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within 0.5 m around each selected sampling point to
form a composite sample. In total, 1287 soil samples
were collected around all selected sampling points.
Soil samples were transported to the laboratory in
iceboxes and immediately passed through a 2-mm
sieve. Each composite sample was divided into three
subsamples: one for molecular analysis (stored at —80
°C), another for the analysis of soil physicochemical
properties (partially air- or oven-dried) and the third
for measurements of ammonium (NH,*-N) and nitrate
(NO,™-N) contents (stored at 4 °C).

DNA extraction, PCR amplification and
sequencing

High-throughput bacterial and fungal DNA analyses
have been well described previously (Wu et al. 2023,
2024). Briefly, DNA was extracted from 0.5 g of soil per
sample using a MagPure Soil DNA KF Kit (Magigene
Biotechnology Co., Ltd, Guangzhou, China) according
to the manufacturer’s instructions. DNA quality was
assessed using 1% agarose gels, and its concentration
and purity were determined using a NanoDrop One
(Thermo Fisher Scientificc, Waltham, MA, USA). The
bacterial 16S rRNA V4-V5 hypervariable regions
were amplified using the universal primers 515F
and 907R (Biddle ef al. 2008), and the fungal second
internal transcribed spacer region was targeted using
the universal primers ITS3 and ITS4 (White et al.
1990). The PCR program was as follows: 94 °C for
5 min, followed by 30 cycles of denaturation at 94 °C
for 30s, annealing at 52 °C for 30 s and elongation at
72 °C for 30s. Operational taxonomic units (OTUs)
with a 97% similarity cutoff were clustered using the
USEARCH software (Edgar 2010), and singleton OTUs
and chimeric sequences were identified and removed.
The representative sequences for each bacterial and
fungal OTUs were taxonomically assigned using Silva
(v.138.1; https://www.arb-silva.de/) and Unite (v.9.0;
http://unite.ut.ee/index.php) databases, respectively.
The sequences of all samples were rarefied according
to the minimum sequence number (11 155 for bacteria
and 24 400 for fungi) to correct for differences in
sequencing depth among samples (Weiss et al. 2017). In
total, there were 8373 bacterial OTUs and 11 961 fungal
OTUs (after deleting OTUs with sequence numbers
across all samples less than 20; Jiao and Lu 2020).

Identifying keystone taxa based on
co-occurrence network analysis

Ecological interactions of within-group species in
bacterial and fungal communities were analyzed using
the Molecular Ecological Network Analysis Pipeline

(MENAP; http://ieg4.rccc.ou.edu/mena/login.cgi;
Deng et al. 2012; Zhou ef al. 2010, 2011) with a log-
transformed Pearson correlation matrix. We selected
OTUs detected in more than 50% of the samples (644
of the total 1287) for network construction to ensure
correlation reliability for the analysis. In ecological
count data, a large portion of the sequencing data
consists of zeros. Zero-value matching of two taxa can
produce false strong correlations. A conventional way
to address this problem is to remove taxa that occur
in a few samples to avoid spurious correlations (Faust
2021). Although removing rare OTUs may disrupt
the network structure, a high rate of false positive
results would be more destructive (Weiss et al. 2016).
Additionally, we compared the network structures that
were constructed based on OTUs detected in over 50%,
40%, 30% and 20% of all samples. Despite having the
smallest number of nodes, the networks, based on
OTUs detected in more than 50%, demonstrated the
highest values for average degree, average clustering
coefficient, geodesic efficiency, centralization of
degree, density and transitivity. On the contrary, they
exhibited the lowest values for average path distance,
harmonic geodesic distance and centralization of
eigenvector centrality (Supplementary Fig. S2 and
Table S1). These findings indicated that the presence of
false strong correlations, resulting from retaining more
zero values (i.e. including OTUs merely occurring in a
few samples), could compromise the complexity and
stability of the network.

In each molecular ecological network, nodes
represented the OTUs, and edges denoted the
correlations between one OTU and another. The
network nodes were clustered into identical modules
based on their relatively similar ecological niches
and functions (Zhou et al. 2010), with each module
representing species’ environmental preferences
and the heterogeneity of their habitats (Ma et al.
2020; Shi et al. 2016). In this study, we assessed the
topological role of each node by considering two
key properties: the relative within-module degree
Zi, which measured the connectivity of a node
within its module, and the participation coefficient
Pi, which quantified the extent to which a node
connects to different modules (Guimera and Amaral
2005). Based on within-module (Zi) and among-
module (Pi) connectivity, nodes in each network
can be placed into four categories: peripherals (Pi <
0.62 and Zi < 2.5), module hubs (Pi < 0.62 and Zi >
2.5), connectors (Pi > 0.62 and Zi < 2.5) and network
hubs (Pi > 0.62 and Zi > 2.5) (Olesen et al. 2007). The
latter three ‘hub’ categories are proposed as keystone
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taxa owing to their dramatic effects on microbiome
(Banerjee et al. 2018; Deng et al. 2012). We therefore
adopted this approach to identify keystone taxa in
our networks. All networks were visualized with
Cytoscape (version 3.8.2) and Gephi (version 0.9.2).

Rare taxa analysis

Possibly due to the subjective understanding of ‘rarity”
(Galand et al. 2009; Pedrds-Alié 2012; Xue et al. 2018),
there is no consistent threshold for defining rare
microbial taxa in soil microbiology, with most studies
using a value of 0.1% or 0.01% relative abundance.
Consistent with previous studies (Galand et al. 2009;
Logares et al. 2014; Xue et al. 2018; Zhao et al. 2022),
we adopted the lower threshold of 0.01% of relative
abundance across all samples. This decision was partly
to make comparison with keystone taxa tractable,
because using 0.1% as the threshold resulted in 74%
of bacterial and 50% of fungal taxa (thousands of
OTUs) being defined as rare. It is worth noting that the
aforementioned literature did not include research on
keystone species. Indeed, there has been an increasing
number of studies reporting the relative abundance
of keystone taxa so far, but the distribution of their
relative abundances is uneven. The average relative
abundance of keystone taxa ranges from 0.009%
to 3.66% (Supplementary Table S2). Most previous
studies classified rare OTUs into two categories: always
raretaxa and conditionally rare taxa (Liangetal. 2020; Xue
et al. 2018). In this study, we refer to always rare taxa,
again for pragmatic reasons, because the high sample
size of more than 1000 resulted in 97% of bacterial
and 85% of fungal taxa being defined as conditionally
rare taxa. Rare microbes are typically defined by their
relative abundance, while keystone taxa are identified
based on their roles within the network structure
(Banerjee et al. 2018). Currently, there is no consistent
threshold for the relative abundance of keystone taxa,
possibly due to variations in keystone communities
acquired based on different ecosystem functions (Yang
et al. 2020). Note, however, that the average relative
abundance of all identified keystone taxa far exceeded
0.01% across all samples (the average relative
abundance of keystone taxa being 0.50% for bacteria
and 0.27% for fungi; Supplementary Table S3). That
is, by our definitions in this study system, rare and
keystone taxa were mutually exclusive subsets in both
bacterial and fungal microbial communities.

Statistical analyses

Influence of abiotic factors on individual taxa and
community structure

We first calculated the Spearman correlation
between abiotic and biotic factors in R using the
psych package (Revelle 2022) to estimate the
importance of specific abiotic factors on the relative
abundance of individual keystone and rare taxa, as
well as bacterial and fungal taxa. Additionally, we
built multiple linear regression models of abundance
as a function of edaphic and topographic (slope,
elevation, convexity) predictors. Measurement
of soil properties (pH, organic carbon (OC), total
nitrogen (TN), total phosphorus (TP), available
phosphorus (AP), available potassium (AK), NH,*-N,
NO,-N, Al, Ca, Cu, Fe, Mg, Mn, Zn and soil moisture
content (SM)) was based on three replicates for each
sample and is described in detail in Supplementary
Methods (see Supplementary Information I). All
abiotic variables were standardized (mean =0,
SD = 1) prior to analysis.

To find the most parsimonious model, we started
with a global model that included all predictors and
compared all possible subset models using the stepAIC
function from the R package MASS (Venables and
Ripley 2002). The model with the lowest Akaike
Information Criterion (AIC) was selected as the
top-ranked model (Burnham and Anderson 2002).
To quantify the explained variation for each of the
predictors retained in the top-ranked model, we used
variance decomposition implemented in the relaimpo
package (Gromping 2006). Regression models were
fitted by using the /m function from the R package
stats (Field et al. 2012).

Having established the taxon-level responses
to abiotic factors, we aimed to quantify the major
determinants of microbial community structure.
This was done by developing a causal path model
that depicts the hypothesized direct and indirect
effects of abiotic factors and keystone/rare taxa on
microbial community structure. Prior to conducting
the path analysis, we initiated the process with
a global model that encompassed all predictors.
Through the utilization of the stepAIC tunction from
the R package MASS (Venables and Ripley 2002), we
compared all possible subset models to identity the
most parsimonious model for explaining variations
in keystone and rare taxa. The model with the lowest
AIC was selected as the top-ranked model (Burnham
and Anderson 2002). Each taxonomic group was
assumed to have a direct influence on community
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structure. However, due to the influence of abiotic
factors on the composition of keystone and rare taxa,
an indirect pathway was anticipated between abiotic
factors and community structure mediated by the
two taxonomic subsets (see Fig. 2 for causal path
model structure). We implemented four separate
causal path analysis models for keystone and rare
taxa, as well as bacterial and fungal taxa, using the
lavaan package (Rosseel 2012).

Soil and topographic predictors used in the causal
path model are described above. To create biological
predictors for keystone and rare taxa composition, as
well as for overall community structure, we used the
first principal coordinate from a principal coordinate
analysis on the relevant Bray-Curtis dissimilarity
matrix, which was performed using the vegan package
(Oksanen et al. 2022). Community structure was
calculated based on all taxa, including the taxonomic
group involved in the direct causal pathway. To
ensure this did not introduce circularity in the results,
we repeated the analysis by calculating community
structure after excluding the related taxonomic group.
As results were essentially unchanged, we present
the version excluding the related taxonomic group in
Supplementary Information I. For the path analysis,
all predictors were standardized (mean =0, SD =1)
to improve normality. Support for the causal path
models was evaluated using the following criteria: a
non-significant Chi-square test (P> 0.05), goodness-
of-fit index >0.90, and root mean square error of
approximation <0.08 (Schermelleh-Engel et al. 2003).

Microbial community functions and network
stability

Bacterial metabolic function profiles were performed
with the Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt2) approach
(Douglas et al. 2020), and fungal OTUs were assigned
to functional guilds with a confidence level of ‘highly
probable” or ‘probable’ based on the FUNGuild
database (Nguyen ef al. 2016). To identify the major
predictors of microbial functions, we used random
forest models, implemented with the randomForest
package (Liaw and Wiener 2002). The contribution
of each taxon to microbial functions was quantified
as the percentage increase in mean squared error
(MSE) of out-of-bag predictions when that taxon was
removed, implemented with the rfPermute package
(Archer 2023), where higher increases in MSE imply
more important taxa (Breiman 2001; Jiao etal. 2018).
Model cross-validated R* values (= 1 — MSE/observed

variance) were assessed with 1000 permutations of
the response variable.

Network stability was characterized by estimating
measures of robustness and vulnerability, where
higher robustness indicates a more stable network, and
higher vulnerability has the opposite interpretation
(Yuan et al. 2021). Robustness was defined as the
proportion of remaining taxa in the MENs after a
certain proportion of nodes was randomly removed
(Dunne et al. 2002; Montesinos-Navarro et al. 2017).
The abundance-weighted mean interaction strength
of nodes was calculated to test the effects of taxa
removal on the remaining taxa (see Yuan ef al. 2021
for the specific calculation method). Vulnerability
was measured as the maximum node vulnerability
in each network (Deng ef al. 2012; Yuan et al. 2021).
Additionally, average variation degree (AVD) was
used to evaluate microbial community stability, where
a higher AVD represents lower microbial community
stability (Xun efal. 2021). In addition to comparing the
stability of bacteria and fungi, correlations between
the average relative abundance of keystone and rare
taxa and variation degree of microbial communities
were explored using local regression smoothing
models with loess function to fit the models in R.

Relationships between microbial community and
aboveground tree community

We finally tested the relationships between the
aboveground tree community composition and
keystone vs. rare soil microbial taxa. This was done
using partial Mantel tests to assess the correlations
between Bray—Curtis dissimilarity matrices for tree
assemblages and microbial communities. Partial
Mantel tests were conducted using the mantel.partial
function of the vegan R package (Oksanen et al. 2022),
which utilized 1000 permutations after controlling for
the potential effects of soil and topographic factors.
Tree distributions were derived from the 2020 census
for the Tiantong 20 ha stem-mapped plot, where
all stems >1.0 cm in diameter at breast height were
mapped, measured, tagged and identified to species.
Tree species composition around each corresponding
soil sampling site was calculated for four circular
quadrats with radii of 5 m, 10 m, 15 m and 20 m.

Repeated keystone analyses on matching rare taxa
samples

Although we had a total of 1287 samples available,
rare bacteria taxa were only found in 535 samples
and rare fungi were present in 1126 samples. As
these samples with no defined rare taxa were
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omitted, the inference of keystone and rare taxa
was based on different sample sizes. To test for any
sensitivity to sample size on the resulting inference,
we repeated the analyses for keystone taxa using
only those samples that also contained rare taxa. As
the results remained largely unchanged, we report
the full sample sizes available for each analysis in the
main text. For completeness, we present the results
of the path analysis and the correlations between
the tree community and keystone taxa limited to
the same samples that were available for rare taxa
in the Supporting Information (see Supplementary
Information I and II for detail).

In order to enhance the universality and
representativeness of the findings from the Tiantong
plot, a comparative analysis of keystone and rare
taxa from the Baishanzu plot was also conducted
(Supplementary Information III). The Baishanzu plot
is at a significantly higher elevation (1437.3-1659.8
m) than the Tiantong plot (312.4-592.2 m). Overall,
it was found that the results from the Baishanzu plot
were similar to those obtained from the Tiantong plot.

RESULTS

Prevalence of keystone and rare taxa

In total, 10 bacterial and 8 fungal OTUs were
identified as keystone taxa (Supplementary Fig. S3),
with keystone bacteria mainly belonging to the phyla
Acidobacteria and Proteobacteria, and keystone
fungi were predominantly from Ascomycota
(SupplementaryTable S3). One fungalkeystone taxon,
OTU106, was classified as a saprotroph. However, the
majority of fungal keystone taxa exhibited compound
guilds. For instance, OTU125 and OTU494 showed
a combination of saprotrophic and symbiotrophic
guilds, while even OTU37 and OTU38 belonged to
compound guilds that encompassed pathotrophic,
saprotrophic and symbiotrophic characteristics.
Generally, keystone taxa had a very low average
abundance across all samples (range: 0.03%-0.60%),
but bacterium OTU25 (belonging to Acidibacter) was
a notable exception, comprising an average of 2.31%
of abundance in all samples (Supplementary Table
S3). Nonetheless, keystone groups such as OTU10,
OTU391, OTU34, OTU25 and OTU16685 in bacteria,
as well as OTU73, OTU38, OTU125, OTU106, OTU20
and OTU37 in fungi, exhibited high node stress,
indicating their roles as critical intermediaries in
the network (Supplementary Table S3). A total of
29 bacterial (average relative abundance range: 1.5

e-04%-2.4 e-04%) and 102 fungal rare taxa (average
relative abundance range: 6.9 e-05%-2.8 e-04%)
were detected (Supplementary Table S4).

Taxon-specific effects of abiotic factors on
keystone bacteria and fungi

Soil physicochemical properties and topographic
factors were associated with the relative abundance of
individual keystone bacterial OTUs, explaining ~23 %-—
51% of variation (Fig. 1a). Across all groups analyzed,
edaphic factors were consistently more influential than
topographic factors. Bacterial keystone taxa showed
consistently strong correlations with pH, Mn and
OC, although the direction and magnitude of these
correlations varied within and among taxa (Fig. 1a).
Abiotic factors were also correlated with keystone fungal
OTU abundance but accounted for less variation (~6%-—
35%, Fig. 1b). Notably, the direction of association
with abundance for many influential edaphic factors
was opposite for bacteria and fungi (especially Mn, Fig.
la). In contrast, while several statistically significant
associations with abiotic factors were evident in
rare bacterial (Supplementary Fig. S4) and fungal
(Supplementary Fig. S5) taxa, the magnitude of these
associations was much weaker than for keystone taxa.

Keystone taxa mediate indirect abiotic
influences on soil microbial community
structure

There were differences in the supported causal
pathways between keystone and rare taxa (Fig. 2;
Supplementary Fig. S6). Most notably, keystone taxa
(both bacteria and fungi) had direct significant effects
on microbial community structure that were not
evident for rare taxa (Fig. 2), and abiotic factors also
had strong direct effects on taxonomic composition for
keystone bacteria (R?=0.69) and fungi (R*=0.65),
similarly absent in rare taxa (both R?< 0.05; Fig. 2).
This resulted in an indirect causal pathway between
abiotic factors and community structure mediated
by keystone but not rare taxa (Fig. 2). As a result,
keystone bacteria and fungi explained much higher
variation in community structure (overall R* =0.92
and 0.82, respectively) than rare bacteria or fungi
(R*=0.44 and 0.48, respectively; Fig. 2). Conclusions
from path analysis were qualitatively identical when
community structure was calculated after excluding
the related keystone or rare taxa (Supplementary Fig.
S7 and when the analysis was repeated for the subset
of samples containing rare taxa (Supplementary
Information II).
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Figure 1: Contributions of soil and topographic factors to the differences in relative abundance of (a) keystone bacteria
and (b) keystone fungi based on correlation and top-ranked regression models. We examined the correlations of these
values with the differences in soil and topographic factors for each pairwise set of soil samples and identified the major
predictors. The top bar chart represents the total contributions of soil and topographic factors to explain microbial variation
(calculated by multiple regression modeling). All of the models had a type 1 error <0.001. Circle size in the bottom
heatmap represents variable importance, and colors represent Spearman correlations.

Microbial community functions and network

bacterial functions (Supplementary Fig. S8).

The

stability

A greater proportion of variation in microbial
function was explained by all keystone taxa
(48.7%—82.3%) than all rare taxa (2.7%-28.0%;
Figs 3 and 4; Supplementary Figs S8 and S9).
Bacterium OTU25 and fungus OTU73 were
identified as the most important keystone taxa for
all analyzed functions (Fig. 3). Bacterium OTU3723
was the most important rare taxon for predicting

best predictors for symbiotrophic, pathogenic and
saprotrophic fungi (excluding wood saprotrophs)
were rare OTU36708, OTU14499 and OTU36708,
respectively (Supplementary Fig. S9).
Co-occurrence networks showed that bacterial
keystone taxa were distributed in six modules,
and fungal keystone taxa were distributed in only
three modules (Fig. 5a and b; Supplementary Fig.
S10). Significantly higher stability was observed in
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Figure 2: Causal path models for direct and indirect effects of soil properties, topographic factors and microbial groups
on community structure. (a) for keystone bacteria, (b) for keystone fungi, (c) for rare bacteria and (d) for rare fungi. Solid
and dashed arrows represent significant and non-significant relationships, respectively. R* values denote the proportion
of variance explained for each variable. *** indicates P < 0.001; **, P< 0.01; *, P < 0.05. For keystone taxa, the response
variables are calculated based on all soil samples (1287), but only 535 soil samples for rare bacteria and 1126 soil samples
for rare fungi are selected because some samples have no defined rare taxa. That is why keystone and rare taxa are not
analyzed together in the same model. After the sample size of keystone and rare taxa was unified, the results of SEMs had
no major change (see Supplementary Information II for details).

the fungal network than in the bacterial network
(Wilcox test, P =2.58e-32, Fig. 5c and d; note higher
robustness and lower vulnerability both indicate
higher stability). Similarly, the stability (as inferred
from AVD) of the fungal community was higher
than that of the bacterial community (Fig. 5e; higher
AVD means lower stability). Moreover, correlations
between the relative abundance of rare taxa and the
stability of the overall microbial community were
slightly weaker than those between the relative
abundance of keystone taxa and the stability of the
overall microbial community (Supplementary Fig.
S11).

Associations of keystone microbes and rare
microbes with tree community composition

After controlling for the influence of soil and
topographic factors, tree community composition
within all radii of soil sampling sites was significantly
correlated with microbial keystone taxa (all

P<0.001, Table 1). In contrast, no significant
associations were observed between tree community
composition and microbial rare taxa (all P> 0.175,
Table 1).

DISCUSSION

Keystone, not rare taxa, dominated ecosystem
structure, functions and stability

Keystone and rare soil microbes can both make
disproportionate contributions to ecosystem functions
and community stability in diverse ecosystems
(Banerjee et al. 2018; Herren and McMahon 2018;
Lynch and Neufeld 2015; Pester et al. 2010). In
this study, we found little evidence that rare soil
microbial taxa contributed disproportionately to
the structure, function and stability of soil microbial
communities or to tree community composition. As
expected, keystone taxa were more influenced by
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Figure 3: Keystone operational taxonomic unit (OTU) and their influence on bacterial functions. Bacterial contributions
of variation in metabolic functions, including (a) carbon metabolism, (b) nitrogen metabolism, (c) phosphorus metabolism,
(d) sulfur metabolism, (e) methane metabolism, (f) pentose phosphate pathway, (g) butanoate metabolism, (h) glyoxylate
and dicarboxylate metabolism and (i) propanoate metabolism. The accuracy importance measure was computed for each
tree and averaged over the forest (1000 trees). Percentage increases in the mean squared error (MSE) of variables were used
to estimate the importance of these predictors, and higher MSE% values imply more important predictors. Significance

levels are as follows: *P < 0.05, **P < 0.01 and ***P < 0.001.

abiotic filtering than rare taxa and contributed more
to soil community functions. Unexpectedly, in this
forest ecosystem, keystone taxa also contributed
more to community stability than rare taxa despite
the higher diversity of the latter (Supplementary
Fig. S11). This contrasts with the role played by
rare taxa in sustaining crop mycobiome stability and
ecosystem functions (Shade and Gilbert 2015; Xiong
et al. 2021). As such, these findings raise questions
over the relative importance of microbial keystone
and rare taxa in unmanaged forest soils.

As anticipated, the effects of abiotic filtering on
keystone taxa were greater than those on rare taxa.
This was clearly illustrated by the indirect influence
of abiotic factors on microbial community structure
that was mediated by keystone taxa, but not by rare
bacteria and fungi (Fig. 2). Ramirez et al. (2018) also
found no evidence for abiotic filtering on rare soil

bacteria across a variety of natural and anthropogenic
habitats at the global scale, although they found that
rare taxa dominated community structure, which
contrasts with our results. Such inconsistency is
likely due to our specific comparison of rare taxa
with keystone taxa, without overlap between the
two groups. It is possible that some influential rare
taxa in the study of Ramirez ef al. (2018) would have
been classified as keystone taxa using our approach.

Keystone taxa constrain community composition
through their influence on other taxa (Paine 1969).
In our study site, abiotically filtered keystone taxa
may interact with other taxa and alter the abundance
of their partners, thereby regulating the entire soil
microbial community structure (Banerjee et al.
2018). Bacterial keystone taxa were more influenced
by abiotic factors than fungal keystone taxa (Figs 1
and 2), which might be attributed to the acidity of
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Figure 4: Keystone operational taxonomic unit (OTU) and their influence on fungal functions. Fungal contributions of
variation in symbiotrophic, pathogenic, and saprotrophic functions, including (a) symbiotrophs, (b) arbuscular mycorrhizal
fungi, (¢) ectomycorrhizal fungi, (d) pathotrophs, (e) plant pathogens, (f) animal pathogens, (g) saprotrophs, (h) soil
saprotrophs and (i) wood saprotrophs. The accuracy importance measure was computed for each tree and averaged over
the forest (1000 trees). Percentage increases in the mean squared error (MSE) of variables were used to estimate the
importance of these predictors, and higher MSE% values imply more important predictors. Significance levels are as

follows: *P < 0.05 and **P < 0.01.

the soil (pH: 2.79-5.79), given that the community
composition of bacteria is more sensitive to soil pH
than that of fungi (Bahram e al. 2018; Fierer and
Jackson 2006; Ni et al. 2021). Additionally, other
studies have also shown that bacteria are more
influenced by abiotic factors than fungi in a variety of
ecosystems (de Dieu Habiyaremye et al. 2021; Millard
and Singh 2010; Uroz et al. 2016).

Keystone taxa accounted for a larger proportion
of functions of soil communities, although rare
taxa did contribute to each function (Figs 3 and 4;
Supplementary Figs S8 and S9). Keystone taxa have
strong predictive power for variations in microbial
community composition (Herren and McMahon
2018), and here we found keystone taxa explained
more than five times the percentage of bacterial
functions than that explained by rare taxa (Fig. 3;
Supplementary Fig. S8). Microbial keystone taxa are

positively associated with multiple functional genes
related to nutrient cycling (Fan et al. 2021). The
bacterial network with lower robustness and higher
vulnerability suggested its stability was significantly
lower than that of fungi (Fig. 5c and d). This might
be attributed to the discrepancy in the body size of
bacteria and fungi, which range from 0.2-20 pm
(Young 2006) to 5-50 pm (Ingold 1971) in diameter,
respectively.

Generally, diverse subsets of soil microbial taxa
(e.g. bacterial keystone taxa vs. fungal keystone
taxa; keystone taxa vs. rare taxa) have different
life strategies and occupy various ecological niches
(Pedrds-Alid 2012). Keystone taxa, on the one hand,
have greater connectivity and play a stabilizing role
in microbial community composition (Herren and
McMahon 2018). On the other hand, keystone taxa,
occupying wider niches than rare taxa, are likely
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Figure 5: Co-occurrence network of operational taxonomic units (OTUs) for (a) bacterial and (b) fungal communities
and network stability. The nodes were colored according to modularity, with node size proportional to the number of
degrees. The edges in the networks depict correlations (red color = positive correlations; blue color = negative correlations).
Keystone OTUs in the networks are indicated by star symbols. Since the correlations between OTUs that occur only in
a small number of samples when constructing the networks can result in a high rate of false positives, the networks in
this study did not contain rare taxa. (c) Robustness measured as the proportion of taxa remained when 50% of the taxa
were randomly removed from each of the empirical molecular ecological networks, *** indicates P < 0.001. (d) Network
vulnerability is measured by maximum node vulnerability in each network. (e) Average variation degree values of bacterial

and fungal communities.

more able to utilize the resources that support their
persistence. Microbial rare taxa, with their narrow
niche breadth, exhibit greater habitat specificity
(Jousset et al. 2017; Zhang et al. 2022).

Potential natural forest management
applications of keystone soil microbes

We also found that tree composition was more
strongly associated with keystone taxa than with rare
taxa (Table 1). It is not surprising that soil microbes
are known to strongly influence plant diversity

(van der Heijden et al. 2008), resulting in significant
correlations between aboveground tree communities
and soil microbes (Barberdn et al. 2015). Given that
keystone taxa comprised relatively few species, if
these correlations proved to be causal, it would
simplify management applications analogous to
those in agroecosystems. In such systems, it has
been found that microbial keystone groups can be
utilized to enhance crop productivity by modifying
the aboveground-underground flow of mineral
elements in the soil (Wang et al. 2022). Therefore, it is
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Table 1: Relationships between keystone and rare microbial taxa with tree community composition

Radius (m) Variable

20 Bacterial keystone taxa

Fungal keystone taxa

Bacterial rare taxa

Fungal rare taxa

15 Bacterial keystone taxa

Fungal keystone taxa

Bacterial rare taxa

Fungal rare taxa

10 Bacterial keystone taxa

Fungal keystone taxa

Bacterial rare taxa

Fungal rare taxa

5 Bacterial keystone taxa

Fungal keystone taxa

Bacterial rare taxa

Fungal rare taxa

r P
0.134 <0.001
0.196 <0.001
0.004 0.209
0.004 0.190
0.135 0.001
0.200 <0.001
0.005 0.175
0.004 0.239
0.138 0.001
0.199 0.001
0.004 0.239
0.003 0.265
0.116 0.001
0.177 0.001
0.001 0.411
0.003 0.297

Statistics correspond to partial Mantel tests controlling for differences in soil and topographic factors. Differences among
tree assemblages and microbial communities estimated using Bray—Curtis distances and differences among abiotic factors
estimated using Euclidean distance. Radius refers to the distance around the corresponding soil sampling site used to define
the neighborhood of trees, r is the Mantel test statistic showing the strength and direction of association, and P is the type

1 error estimate from permutation tests.

anticipated that a similar effect could be achieved in
forest ecosystems. Collectively, these findings suggest
that it could be potential, as with agroecosystems
(Fan et al. 2021; Wang et al. 2022), to enhance the
stability and resistance of soil microbial communities
by regulating relatively few keystone taxa or a subset
of microbial taxa to maintain or improve ecosystem
functioning in natural forests. This may involve
introducing them into forest soils as biofertilizers
as follows (Zheng et al. 2021): (1) conducting a
comprehensive analysis of the forest microbiomes
using high-throughput sequencing techniques to
elucidate their composition and interactions; (2)
identitying keystone microbes by employing network
analysis to reveal those with pivotal roles in forest
soils; (3) screening for cultivable keystone groups
that can be manipulated to exert beneficial effects;
(4) selecting candidate isolates by comparison to the
identified keystone taxa; (5) producing microbial
fertilizer and applying it to forest soils (Supplementary
Fig. S12).

Bacterial keystone taxa mostly belonged to
Acidobacteria and Proteobacteria, which are among
the most widely occurring phyla in soil globally
(Ramirez et al. 2018). Consistent with the global
pattern (Fierer and Jackson 2006), soil pH was
strongly influential on keystone bacteria, and it is
known to regulate the abundance of Acidobacteria
(Rousk et al. 2010). Proteobacteria have also been
found to be important in carbon cycling within
forest ecosystems, as they preferentially consume
the labile pool of organic carbon (Lladé et al
2017). Additionally, certain taxa within the order
Rhizobiales, involved in nitrogen-fixation within the
N cycle (Chen et al. 2021), are well-known for their
beneficial interactions with plants (Erlacher et al.
2015). In agroecosystems, Rhizobiales and Candidatus
Solibacter have also been used as biomarkers (Zhang
and Lv 2020). Fungal keystone taxa mostly belonged
to Ascomycota, which are typical saprophytic fungi
(Treseder ef al. 2014) capable of degrading lignin-rich
carbon sources in soils (Ye ef al. 2020). Moreover,
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Mortierella is widely distributed in soils (Werner et
al. 2016) and has been found to associate with both
plant roots (Jiang et al. 2011) and leaves (Persoh
2013). While Mortierella is commonly isolated from
forest litter as a saprophyte, it is now extensively
used in agricultural soil for decomposition (Ozimek
and Hanaka 2021). The keystone order Mortierellales
also plays a critical role in decomposing complex
organic matter (Wu et al. 2020).

Furthermore, the interaction between bacteria
and fungi can have a profound impact on plant
health, with bacterial commensals being able
to regulate fungal growth (Getzke et al. 2019).
Specifically, Candidatus Solibacter and Acidibacter,
identified as two pivotal bacterial keystone genera,
exert synergistic effects on ectomycorrhizal fungi
and serve as positive predictors for the relative
abundance of ectomycorrhizal fungi (Berrios et al.
2023). In the meanwhile, fungal keystone taxa
with specific functions can engage in a range of
interactions with bacteria, profoundly influencing
the dynamics of bacterial communities. For example,
fungal hyphae serve as a growth substrate for bacteria
by releasing exudates as carbon resources (Shi et al.
2023; Zhang et al. 2021) and facilitate the spread
of bacteria (Toljander et al. 2006). By mediating
the dispersal of bacteria, fungal hyphae can also
facilitate horizontal gene transfer among bacterial
cells (Ruan et al. 2022), thereby promoting the rapid
evolution of bacteria (Arnold et al. 2022; Shi et al.
2023). Therefore, the interactions between bacteria
and fungi have the potential to shape the diversity
and stability of microbiomes. This, in turn, ultimately
influences ecosystem functioning, including soil
carbon sequestration, plant productivity and
pathogen suppression (Shi et al. 2023). Additionally,
it has been noted that the variations in soil properties
and topographic characteristics have the greatest
impacts on the saprotrophic keystones (e.g. OTU125
and OTU106; Fig. 1), which play prominent roles
in nutrient decomposition and redistribution
(Hattenschwiler et al. 2005).

The multiple roles played by a relatively small
number of keystone taxa in this forest raise the
potential that keystone taxa could be manipulated
to help maintain tree community diversity and
regulate soil microbial processes. The identification
of keystone species in forest soils could inform new
approaches to sustainably manage forests to help
ameliorate some impacts of global change (Bonan
2008). These findings could have the potential to
guide future conservation priorities.

LIMITATIONS

While stronger associations were observed
between keystone microbes, rather than rare
microbes, and the structure and functions of soil
microbial communities as well as tree composition,
establishing definitive causality remains a challenge
inherent in large-scale field investigation studies.
Moreover, as with any study of this nature, patterns
of co-occurrence in soil microbial networks must
be interpreted with caution, as the correlations on
which they are based might not translate to true
interactions (Goberna and Verdd 2022). Ideally,
the roles of keystone taxa inferred from this
study should be tested using targeted follow-up
experiments (Banerjee et al. 2018; Faust 2021).
However, the test process could be complicated
and time-consuming, such as the validation of the
‘comammox’ or complete nitrifiers (Costa et al.
2006; Daims et al. 2015). Moreover, it is currently
unknown to what degree network stability,
measured with a single parameter (Yuan et al.
2021), truly represents the stability of the study
system. While this is a commonly adopted approach
in network analysis, a variety of model calculations
and experimental verifications of community
stability are still necessary. Although the results
from the Tiantong subtropical forest plot have
been validated using another subtropical forest
plot (Baishanzu), it is important to note that these
findings may be limited to the specific forest type
and environmental conditions. Therefore, future
research should be conducted to test the universality
and representativeness of these findings, including
a wider range of forest types.
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Supplementary material is available at Journal of
Plant Ecology online.
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