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Abstract 

The significance of microbes for ecosystem functioning is well known; however, within a single system, the 
relative contributions of keystone and rare taxa to soil microbial functions are less well quantified, as are 
their shared or unique responses to abiotic conditions. Furthermore, their associations with tree community 
composition in natural forest ecosystems are not well understood. In this study, a total of 1287 soil samples 
were collected from a 20-ha subtropical forest plot and analyzed using high-throughput sequencing. Based on 
co-occurrence network analyses, we conducted a comparison of the associations between keystone and rare 
taxa with the structure, functions and stability of soil microbial communities. Additionally, we examined their 
associations with tree community composition. Results showed that keystone taxa made a significantly greater 
contribution than rare taxa in all comparisons of microbial functions and stability. Keystone taxa had direct 
effects on microbial community structure and also mediated indirect effects of abiotic conditions. Neither effect 
was evident for rare taxa. The importance of keystone taxa also extended to aboveground composition, where 
tree community composition was more closely associated with keystone taxa than with rare taxa. While it may 
still be premature to establish causality, our study represents one of the initial attempts to compare the relative 
importance of keystone and rare microbial taxa in forest soils. These findings offer the potential to improve 
natural forest ecosystem functioning and tree diversity through the manipulation of a small number of keystone 
soil microbial taxa, as has been demonstrated in agroecosystems.
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亚热带森林土壤微生物群落以及树木组成与关键微生物的关系强于与稀有微生物的关系
摘要:微生物在参与碳氮循环和能量流动以及分解有机物质等方面对生态系统功能具有重要作用。然
而，在单一生态系统中，关键类群和稀有类群对土壤微生物功能的相对贡献尚未得到充分量化。此
外，它们对非生物因素的共同或独特响应缺乏深入研究，并且它们与森林生态系统中树木群落组成的
关联尚不明确。因此，本研究依托浙江天童20公顷亚热带森林动态监测样地，采集了1287份土壤样
本，并进行了高通量测序分析以明确微生物群落组成。基于共现网络分析，我们比较了微生物关键类群
和稀有类群与土壤微生物群落结构、功能和稳定性间的关系。此外，我们还探究了它们与树木群落组成
之间的关系。结果显示，在所有微生物功能和稳定性的比较中，微生物关键类群的贡献程度均高于稀有
类群。关键类群对微生物群落结构产生了直接影响，并在一定程度上调节了非生物因素的间接作用。然
而，稀有类群并未表现出类似的影响。此外，关键类群的重要性同样体现在地上树木群落的组成上，即
树木群落组成与关键类群的关系明显强于与稀有类群的关系。上述研究结果表明，通过对少数关键土壤
微生物类群的调控，有望提升森林生态系统的功能及树木多样性。

关键词:群落稳定性，生态网络，生态系统功能，关键类群，稀有类群

INTRODUCTION
Soil microbes are ubiquitous and indispensable 
ecosystem components (Xun et al. 2021) that are 
critical for ecosystem functioning (Bardgett and van 
der Putten 2014). In forest ecosystems, soil microbes 
also shape aboveground patterns of tree biodiversity 
through their influence on plant growth and 
community assembly (Hannula et al. 2021). Much 
research has sought to understand how highly diverse 
soil microbial communities regulate ecosystem 
structure and functions (Bardgett and van der Putten 
2014). This has identified disproportionately high 
contributions to community structure and ecosystem 
functions made by both keystone and rare microbial 
taxa (Banerjee et al. 2018; Chen et al. 2020; Herren and 
McMahon 2018; Lynch and Neufeld 2015; Pester et 
al. 2010; Xiong et al. 2021; Xun et al. 2021). However, 
individual studies have tended to either focus solely 
on keystone taxa or compare abundant and rare taxa 
without differentiating keystone taxa. Even within 
a single ecological context, the relative importance 
of keystone and rare taxa for ecosystem functioning 
remains uncertain. Moreover, the role of abiotic 
conditions in structuring these critical components 
of soil microbial diversity is not well understood 
either. Such understanding could provide a more 
holistic view of the role of soil microbial diversity in 
ecosystem functioning, potentially informing new 
management interventions.

As ‘ecosystem engineers’ (Banerjee et al. 2018; 
Mills et al. 1993; Yue et al. 2019), keystone taxa 
are highly connected within the microbiome. By 
definition, keystone taxa have a huge impact on the 

structure and function of microbiome, regardless of 
their abundance across space and time (Banerjee 
et al. 2018; Lynch and Neufeld 2015; Paine 1995). 
Given their importance in soils, microbial keystone 
taxa have been extensively studied in agricultural 
ecosystems (Banerjee et al. 2019; Shi et al. 2020), for 
their roles in supporting ecosystem functions (Shi 
et al. 2020), maintaining soil microbiome stability 
and generalist metabolism (Fan et al. 2018; Xun et 
al. 2021), predicting nitrogen-cycling processes 
(Dai et al. 2021; Yue et al. 2019) and protecting 
crops against pathogens (Trivedi et al. 2017). 
The association between soil keystone taxa and 
agricultural production has been an important line 
of research (Banerjee et al. 2019), enabling their 
use to improve crop productivity (Wang et al. 2022; 
e.g. by adding the screened keystone taxa to the 
soil as biofertilizers; Fan et al. 2021). In contrast to 
agricultural systems, however, the role of keystone 
taxa in forest ecosystems remains largely unknown, 
despite considerable research on soil microbes 
(Barberán et al. 2015; Chen et al. 2019; Lladó et al. 
2017). If microbial keystone taxa were found to 
have an influence on soil and tree communities, it 
would be reasonable to assume that the promotion 
of ecosystem functioning in natural forests could 
potentially be achieved by regulating keystone soil 
microbes, similar to successful approaches applied in 
agroecosystems (Wang et al. 2022; Zheng et al. 2021).

As with keystone taxa, numerous studies have 
revealed that the contributions of rare taxa to 
ecosystem services are disproportionate to their 
abundance (Jia et al. 2018; Pester et al. 2010; 
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Yang 2021). Indeed, the importance of rare taxa 
in performing keystone-like roles in microbial 
co-occurrence networks and community structure 
is increasingly recognized (Lynch and Neufeld 2015; 
Ramirez et al. 2018; Xiong et al. 2021). Additionally, 
the large number of species found with very low 
abundances in most microbial communities (Pedrós-
Alió 2012; Xiong et al. 2021) collectively provide a 
reservoir of genetic traits associated with a wide 
range of ecosystem functions (Elshahed et al. 2008; 
Pascoal et al. 2021). This creates the potential for 
rare taxa to rapidly respond to environmental 
perturbation (e.g. conditionally rare taxa; Shade 
et al. 2014), thus providing resilience in ecosystem 
functioning (Pascoal et al. 2021) and explaining the 
disproportionately high contribution of rare taxa in 
driving ecosystem multifunctionality (Chen et al. 
2020). Specific examples of the importance of rare 
microbial taxa include maintaining the stability 
of mycobiome networks (Xiong et al. 2021) and 
mediating the negative impacts of land degradation 
on ecosystem functioning (Wu et al. 2021).

Since both keystone and rare taxa have been 
associated with disproportionate contributions to 
soil microbial community structure, functions and 
stability, their relative abundances do not truly 
reflect their importance (Banerjee et al. 2018; Lynch 
and Neufeld 2015). Thus, the shared importance 
and, in some cases, overlapping roles of keystone 
and rare microbial taxa raise questions about their 
relative contributions and how they assemble into 
communities within a single ecological system. This 
is of particular interest in natural ecosystems, rather 
than agricultural ones, where relative abundances 
also reflect minimal anthropogenic impacts, such as 
soil disturbance or nutrient addition.

In this study, we collected 1287 soil samples 
from a 20-ha stem-mapped subtropical forest plot 
to analyze the network structure of soil bacterial 
and fungal communities. Our main interest was 
in comparing the relative influence of keystone 
and rare microbes on microbial community 
functions and stability, their respective sensitivities 
to abiotic conditions and their relationships with 
aboveground (tree community) composition. Given 
the strong influence of abiotic factors on keystone 
taxa (Resetarits et al. 2018; Yang et al. 2020) and the 
lesser influence on rare taxa (Ramirez et al. 2018), 
it was expected that there was a closer association 
between keystone taxa and abiotic (soil and 
topographic) factors. Specifically, we hypothesized 
that (i) the community structure of keystone taxa 

would be more strongly associated with abiotic 
(soil and topographic) factors than that of rare 
taxa, which would result in a greater association 
with aboveground composition; (ii) both keystone 
and rare taxa would contribute substantially to 
ecosystem functioning, but the former would 
dominate through their known linkages with biotic 
and abiotic factors; and that (iii) the high richness 
of rare taxa would enable them to make greater 
contributions to community stability. However, we 
found that keystone taxa dominated all comparisons, 
suggesting that rare taxa play a relatively limited 
role in this natural forest.

MATERIALS AND METHODS

Study site and soil sampling

The study site is located at Tiantong National Field 
Observation Station for Forest Ecosystems (29°48ʹ 
N, 121°47ʹ E), which is a representative subtropical 
evergreen broadleaved forest in Zhejiang Province, 
East China. The study region has a subtropical 
monsoon climate with humid, hot summers and 
dry, cold winters (Zhou et al. 2020). The mean 
annual precipitation is 1374 mm, and the mean 
annual temperature is 16.2 °C (Hu et al. 2020). The 
soil has a clay loam texture with 6.8% sand, 55.5% 
silt and 37.7% clay (Zhou et al. 2020). Common 
tree species include Castanopsis fargesii Franch., 
Schima superba Gardn and Castanopsis carlesii 
(Hemsl.) Hayata (Hu et al. 2020). The studied 
forest plot was established in 2008 as part of the 
Forest Global Earth Observatory network (https://
forestgeo.si.edu/) and covered a total area of 20 
ha (500 m × 400 m) (Qiao et al. 2020). The plot 
topographic data (elevation, slope and convexity) 
were collected and converted into topographic 
data for each sampling point using the Kriging 
interpolation method.

In 2018, we collected a total of 1287 soil samples over 
the 20-ha study area using a gridded sampling design 
(Supplementary Fig. S1; Wu et al. 2024). Following 
the criterion for soil sample collection established by 
the Center for Tropical Forest Sciences (John et al. 
2007), we selected the intersections of each quadrat 
as the base sampling points and chose two additional 
sampling points randomly positioned 2, 5 or 8 m away 
from 70% of the base points in each selected direction. 
After removing surface litter and the organic layer, we 
took four soil cores from the mineral layer (0–10 cm 
depth) using a soil auger with a 10-cm inner diameter 
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within 0.5 m around each selected sampling point to 
form a composite sample. In total, 1287 soil samples 
were collected around all selected sampling points. 
Soil samples were transported to the laboratory in 
iceboxes and immediately passed through a 2-mm 
sieve. Each composite sample was divided into three 
subsamples: one for molecular analysis (stored at −80 
°C), another for the analysis of soil physicochemical 
properties (partially air- or oven-dried) and the third 
for measurements of ammonium (NH

4
+-N) and nitrate 

(NO
3
−-N) contents (stored at 4 °C).

DNA extraction, PCR amplification and 
sequencing

High-throughput bacterial and fungal DNA analyses 
have been well described previously (Wu et al. 2023, 
2024). Briefly, DNA was extracted from 0.5 g of soil per 
sample using a MagPure Soil DNA KF Kit (Magigene 
Biotechnology Co., Ltd, Guangzhou, China) according 
to the manufacturer’s instructions. DNA quality was 
assessed using 1% agarose gels, and its concentration 
and purity were determined using a NanoDrop One 
(Thermo Fisher Scientific, Waltham, MA, USA). The 
bacterial 16S rRNA V4–V5 hypervariable regions 
were amplified using the universal primers 515F 
and 907R (Biddle et al. 2008), and the fungal second 
internal transcribed spacer region was targeted using 
the universal primers ITS3 and ITS4 (White et al. 
1990). The PCR program was as follows: 94 °C for 
5 min, followed by 30 cycles of denaturation at 94 °C 
for 30 s, annealing at 52 °C for 30 s and elongation at 
72 °C for 30 s. Operational taxonomic units (OTUs) 
with a 97% similarity cutoff were clustered using the 
USEARCH software (Edgar 2010), and singleton OTUs 
and chimeric sequences were identified and removed. 
The representative sequences for each bacterial and 
fungal OTUs were taxonomically assigned using Silva 
(v.138.1; https://www.arb-silva.de/) and Unite (v.9.0; 
http://unite.ut.ee/index.php) databases, respectively. 
The sequences of all samples were rarefied according 
to the minimum sequence number (11 155 for bacteria 
and 24 400 for fungi) to correct for differences in 
sequencing depth among samples (Weiss et al. 2017). In 
total, there were 8373 bacterial OTUs and 11 961 fungal 
OTUs (after deleting OTUs with sequence numbers 
across all samples less than 20; Jiao and Lu 2020).

Identifying keystone taxa based on 
co-occurrence network analysis

Ecological interactions of within-group species in 
bacterial and fungal communities were analyzed using 
the Molecular Ecological Network Analysis Pipeline 

(MENAP; http://ieg4.rccc.ou.edu/mena/login.cgi; 
Deng et al. 2012; Zhou et al. 2010, 2011) with a log-
transformed Pearson correlation matrix. We selected 
OTUs detected in more than 50% of the samples (644 
of the total 1287) for network construction to ensure 
correlation reliability for the analysis. In ecological 
count data, a large portion of the sequencing data 
consists of zeros. Zero-value matching of two taxa can 
produce false strong correlations. A conventional way 
to address this problem is to remove taxa that occur 
in a few samples to avoid spurious correlations (Faust 
2021). Although removing rare OTUs may disrupt 
the network structure, a high rate of false positive 
results would be more destructive (Weiss et al. 2016). 
Additionally, we compared the network structures that 
were constructed based on OTUs detected in over 50%, 
40%, 30% and 20% of all samples. Despite having the 
smallest number of nodes, the networks, based on 
OTUs detected in more than 50%, demonstrated the 
highest values for average degree, average clustering 
coefficient, geodesic efficiency, centralization of 
degree, density and transitivity. On the contrary, they 
exhibited the lowest values for average path distance, 
harmonic geodesic distance and centralization of 
eigenvector centrality (Supplementary Fig. S2 and 
Table S1). These findings indicated that the presence of 
false strong correlations, resulting from retaining more 
zero values (i.e. including OTUs merely occurring in a 
few samples), could compromise the complexity and 
stability of the network.

In each molecular ecological network, nodes 
represented the OTUs, and edges denoted the 
correlations between one OTU and another. The 
network nodes were clustered into identical modules 
based on their relatively similar ecological niches 
and functions (Zhou et al. 2010), with each module 
representing species’ environmental preferences 
and the heterogeneity of their habitats (Ma et al. 
2020; Shi et al. 2016). In this study, we assessed the 
topological role of each node by considering two 
key properties: the relative within-module degree 
Zi, which measured the connectivity of a node 
within its module, and the participation coefficient 
Pi, which quantified the extent to which a node 
connects to different modules (Guimerà and Amaral 
2005). Based on within-module (Zi) and among-
module (Pi) connectivity, nodes in each network 
can be placed into four categories: peripherals (Pi ≤ 
0.62 and Zi ≤ 2.5), module hubs (Pi ≤ 0.62 and Zi > 
2.5), connectors (Pi > 0.62 and Zi ≤ 2.5) and network 
hubs (Pi > 0.62 and Zi > 2.5) (Olesen et al. 2007). The 
latter three ‘hub’ categories are proposed as keystone 
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taxa owing to their dramatic effects on microbiome 

(Banerjee et al. 2018; Deng et al. 2012). We therefore 

adopted this approach to identify keystone taxa in 

our networks. All networks were visualized with 

Cytoscape (version 3.8.2) and Gephi (version 0.9.2).

Rare taxa analysis

Possibly due to the subjective understanding of ‘rarity’ 

(Galand et al. 2009; Pedrós-Alió 2012; Xue et al. 2018), 

there is no consistent threshold for defining rare 

microbial taxa in soil microbiology, with most studies 

using a value of 0.1% or 0.01% relative abundance. 

Consistent with previous studies (Galand et al. 2009; 

Logares et al. 2014; Xue et al. 2018; Zhao et al. 2022), 

we adopted the lower threshold of 0.01% of relative 

abundance across all samples. This decision was partly 

to make comparison with keystone taxa tractable, 

because using 0.1% as the threshold resulted in 74% 

of bacterial and 50% of fungal taxa (thousands of 

OTUs) being defined as rare. It is worth noting that the 

aforementioned literature did not include research on 

keystone species. Indeed, there has been an increasing 

number of studies reporting the relative abundance 

of keystone taxa so far, but the distribution of their 

relative abundances is uneven. The average relative 

abundance of keystone taxa ranges from 0.009% 

to 3.66% (Supplementary Table S2). Most previous 

studies classified rare OTUs into two categories: always 

rare taxa and conditionally rare taxa (Liang et al. 2020; Xue 

et al. 2018). In this study, we refer to always rare taxa, 

again for pragmatic reasons, because the high sample 

size of more than 1000 resulted in 97% of bacterial 

and 85% of fungal taxa being defined as conditionally 

rare taxa. Rare microbes are typically defined by their 

relative abundance, while keystone taxa are identified 

based on their roles within the network structure 

(Banerjee et al. 2018). Currently, there is no consistent 

threshold for the relative abundance of keystone taxa, 

possibly due to variations in keystone communities 

acquired based on different ecosystem functions (Yang 

et al. 2020). Note, however, that the average relative 

abundance of all identified keystone taxa far exceeded 

0.01% across all samples (the average relative 

abundance of keystone taxa being 0.50% for bacteria 

and 0.27% for fungi; Supplementary Table S3). That 

is, by our definitions in this study system, rare and 

keystone taxa were mutually exclusive subsets in both 

bacterial and fungal microbial communities.

Statistical analyses

Influence of abiotic factors on individual taxa and 
community structure

We first calculated the Spearman correlation 
between abiotic and biotic factors in R using the 
psych package (Revelle 2022) to estimate the 
importance of specific abiotic factors on the relative 
abundance of individual keystone and rare taxa, as 
well as bacterial and fungal taxa. Additionally, we 
built multiple linear regression models of abundance 
as a function of edaphic and topographic (slope, 
elevation, convexity) predictors. Measurement 
of soil properties (pH, organic carbon (OC), total 
nitrogen (TN), total phosphorus (TP), available 
phosphorus (AP), available potassium (AK), NH

4
+-N, 

NO
3

--N, Al, Ca, Cu, Fe, Mg, Mn, Zn and soil moisture 
content (SM)) was based on three replicates for each 
sample and is described in detail in Supplementary 
Methods (see Supplementary Information I). All 
abiotic variables were standardized (mean = 0, 
SD = 1) prior to analysis.

To find the most parsimonious model, we started 
with a global model that included all predictors and 
compared all possible subset models using the stepAIC 
function from the R package MASS (Venables and 
Ripley 2002). The model with the lowest Akaike 
Information Criterion (AIC) was selected as the 
top-ranked model (Burnham and Anderson 2002). 
To quantify the explained variation for each of the 
predictors retained in the top-ranked model, we used 
variance decomposition implemented in the relaimpo 
package (Grömping 2006). Regression models were 
fitted by using the lm function from the R package 
stats (Field et al. 2012).

Having established the taxon-level responses 
to abiotic factors, we aimed to quantify the major 
determinants of microbial community structure. 
This was done by developing a causal path model 
that depicts the hypothesized direct and indirect 
effects of abiotic factors and keystone/rare taxa on 
microbial community structure. Prior to conducting 
the path analysis, we initiated the process with 
a global model that encompassed all predictors. 
Through the utilization of the stepAIC function from 
the R package MASS (Venables and Ripley 2002), we 
compared all possible subset models to identify the 
most parsimonious model for explaining variations 
in keystone and rare taxa. The model with the lowest 
AIC was selected as the top-ranked model (Burnham 
and Anderson 2002). Each taxonomic group was 
assumed to have a direct influence on community 
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structure. However, due to the influence of abiotic 
factors on the composition of keystone and rare taxa, 
an indirect pathway was anticipated between abiotic 
factors and community structure mediated by the 
two taxonomic subsets (see Fig. 2 for causal path 
model structure). We implemented four separate 
causal path analysis models for keystone and rare 
taxa, as well as bacterial and fungal taxa, using the 
lavaan package (Rosseel 2012).

Soil and topographic predictors used in the causal 
path model are described above. To create biological 
predictors for keystone and rare taxa composition, as 
well as for overall community structure, we used the 
first principal coordinate from a principal coordinate 
analysis on the relevant Bray–Curtis dissimilarity 
matrix, which was performed using the vegan package 
(Oksanen et al. 2022). Community structure was 
calculated based on all taxa, including the taxonomic 
group involved in the direct causal pathway. To 
ensure this did not introduce circularity in the results, 
we repeated the analysis by calculating community 
structure after excluding the related taxonomic group. 
As results were essentially unchanged, we present 
the version excluding the related taxonomic group in  
Supplementary Information I. For the path analysis, 
all predictors were standardized (mean = 0, SD = 1) 
to improve normality. Support for the causal path 
models was evaluated using the following criteria: a 
non-significant Chi-square test (P > 0.05), goodness-
of-fit index >0.90, and root mean square error of 
approximation <0.08 (Schermelleh-Engel et al. 2003).

Microbial community functions and network 
stability

Bacterial metabolic function profiles were performed 
with the Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt2) approach 
(Douglas et al. 2020), and fungal OTUs were assigned 
to functional guilds with a confidence level of ‘highly 
probable’ or ‘probable’ based on the FUNGuild 
database (Nguyen et al. 2016). To identify the major 
predictors of microbial functions, we used random 
forest models, implemented with the randomForest 
package (Liaw and Wiener 2002). The contribution 
of each taxon to microbial functions was quantified 
as the percentage increase in mean squared error 
(MSE) of out-of-bag predictions when that taxon was 
removed, implemented with the rfPermute package 
(Archer 2023), where higher increases in MSE imply 
more important taxa (Breiman 2001; Jiao et al. 2018). 
Model cross-validated R2 values (= 1 − MSE/observed 

variance) were assessed with 1000 permutations of 
the response variable.

Network stability was characterized by estimating 
measures of robustness and vulnerability, where 
higher robustness indicates a more stable network, and 
higher vulnerability has the opposite interpretation 
(Yuan et al. 2021). Robustness was defined as the 
proportion of remaining taxa in the MENs after a 
certain proportion of nodes was randomly removed 
(Dunne et al. 2002; Montesinos-Navarro et al. 2017). 
The abundance-weighted mean interaction strength 
of nodes was calculated to test the effects of taxa 
removal on the remaining taxa (see Yuan et al. 2021 
for the specific calculation method). Vulnerability 
was measured as the maximum node vulnerability 
in each network (Deng et al. 2012; Yuan et al. 2021). 
Additionally, average variation degree (AVD) was 
used to evaluate microbial community stability, where 
a higher AVD represents lower microbial community 
stability (Xun et al. 2021). In addition to comparing the 
stability of bacteria and fungi, correlations between 
the average relative abundance of keystone and rare 
taxa and variation degree of microbial communities 
were explored using local regression smoothing 
models with loess function to fit the models in R.

Relationships between microbial community and 
aboveground tree community

We finally tested the relationships between the 
aboveground tree community composition and 
keystone vs. rare soil microbial taxa. This was done 
using partial Mantel tests to assess the correlations 
between Bray–Curtis dissimilarity matrices for tree 
assemblages and microbial communities. Partial 
Mantel tests were conducted using the mantel.partial 
function of the vegan R package (Oksanen et al. 2022), 
which utilized 1000 permutations after controlling for 
the potential effects of soil and topographic factors. 
Tree distributions were derived from the 2020 census 
for the Tiantong 20 ha stem-mapped plot, where 
all stems ≥1.0 cm in diameter at breast height were 
mapped, measured, tagged and identified to species. 
Tree species composition around each corresponding 
soil sampling site was calculated for four circular 
quadrats with radii of 5 m, 10 m, 15 m and 20 m.

Repeated keystone analyses on matching rare taxa 
samples

Although we had a total of 1287 samples available, 
rare bacteria taxa were only found in 535 samples 
and rare fungi were present in 1126 samples. As 
these samples with no defined rare taxa were 
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omitted, the inference of keystone and rare taxa 
was based on different sample sizes. To test for any 
sensitivity to sample size on the resulting inference, 
we repeated the analyses for keystone taxa using 
only those samples that also contained rare taxa. As 
the results remained largely unchanged, we report 
the full sample sizes available for each analysis in the 
main text. For completeness, we present the results 
of the path analysis and the correlations between 
the tree community and keystone taxa limited to 
the same samples that were available for rare taxa 
in the Supporting Information (see Supplementary 
Information I and II for detail).

In order to enhance the universality and 
representativeness of the findings from the Tiantong 
plot, a comparative analysis of keystone and rare 
taxa from the Baishanzu plot was also conducted 
(Supplementary Information III). The Baishanzu plot 
is at a significantly higher elevation (1437.3–1659.8 
m) than the Tiantong plot (312.4–592.2 m). Overall, 
it was found that the results from the Baishanzu plot 
were similar to those obtained from the Tiantong plot.

RESULTS

Prevalence of keystone and rare taxa

In total, 10 bacterial and 8 fungal OTUs were 
identified as keystone taxa (Supplementary Fig. S3), 
with keystone bacteria mainly belonging to the phyla 
Acidobacteria and Proteobacteria, and keystone 
fungi were predominantly from Ascomycota 
(Supplementary Table S3). One fungal keystone taxon, 
OTU106, was classified as a saprotroph. However, the 
majority of fungal keystone taxa exhibited compound 
guilds. For instance, OTU125 and OTU494 showed 
a combination of saprotrophic and symbiotrophic 
guilds, while even OTU37 and OTU38 belonged to 
compound guilds that encompassed pathotrophic, 
saprotrophic and symbiotrophic characteristics. 
Generally, keystone taxa had a very low average 
abundance across all samples (range: 0.03%–0.60%), 
but bacterium OTU25 (belonging to Acidibacter) was 
a notable exception, comprising an average of 2.31% 
of abundance in all samples (Supplementary Table 
S3). Nonetheless, keystone groups such as OTU10, 
OTU391, OTU34, OTU25 and OTU16685 in bacteria, 
as well as OTU73, OTU38, OTU125, OTU106, OTU20 
and OTU37 in fungi, exhibited high node stress, 
indicating their roles as critical intermediaries in 
the network (Supplementary Table S3). A total of 
29 bacterial (average relative abundance range: 1.5 

e-04%–2.4 e-04%) and 102 fungal rare taxa (average 
relative abundance range: 6.9 e-05%–2.8 e-04%) 
were detected (Supplementary Table S4).

Taxon-specific effects of abiotic factors on 
keystone bacteria and fungi

Soil physicochemical properties and topographic 
factors were associated with the relative abundance of 
individual keystone bacterial OTUs, explaining ~23%–
51% of variation (Fig. 1a). Across all groups analyzed, 
edaphic factors were consistently more influential than 
topographic factors. Bacterial keystone taxa showed 
consistently strong correlations with pH, Mn and 
OC, although the direction and magnitude of these 
correlations varied within and among taxa (Fig. 1a). 
Abiotic factors were also correlated with keystone fungal 
OTU abundance but accounted for less variation (~6%–
35%, Fig. 1b). Notably, the direction of association 
with abundance for many influential edaphic factors 
was opposite for bacteria and fungi (especially Mn, Fig. 
1a). In contrast, while several statistically significant 
associations with abiotic factors were evident in 
rare bacterial (Supplementary Fig. S4) and fungal 
(Supplementary Fig. S5) taxa, the magnitude of these 
associations was much weaker than for keystone taxa.

Keystone taxa mediate indirect abiotic 
influences on soil microbial community 
structure

There were differences in the supported causal 
pathways between keystone and rare taxa (Fig. 2; 
Supplementary Fig. S6). Most notably, keystone taxa 
(both bacteria and fungi) had direct significant effects 
on microbial community structure that were not 
evident for rare taxa (Fig. 2), and abiotic factors also 
had strong direct effects on taxonomic composition for 
keystone bacteria (R2 = 0.69) and fungi (R2 = 0.65), 
similarly absent in rare taxa (both R2 ≤ 0.05; Fig. 2). 
This resulted in an indirect causal pathway between 
abiotic factors and community structure mediated 
by keystone but not rare taxa (Fig. 2). As a result, 
keystone bacteria and fungi explained much higher 
variation in community structure (overall R2 = 0.92 
and 0.82, respectively) than rare bacteria or fungi 
(R2 = 0.44 and 0.48, respectively; Fig. 2). Conclusions 
from path analysis were qualitatively identical when 
community structure was calculated after excluding 
the related keystone or rare taxa (Supplementary Fig. 
S7 and when the analysis was repeated for the subset 
of samples containing rare taxa (Supplementary 
Information II).
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Microbial community functions and network 
stability

A greater proportion of variation in microbial 
function was explained by all keystone taxa 
(48.7%–82.3%) than all rare taxa (2.7%–28.0%; 
Figs 3 and 4; Supplementary Figs S8 and S9). 
Bacterium OTU25 and fungus OTU73 were 
identified as the most important keystone taxa for 
all analyzed functions (Fig. 3). Bacterium OTU3723 
was the most important rare taxon for predicting 

bacterial functions (Supplementary Fig. S8). The 
best predictors for symbiotrophic, pathogenic and 
saprotrophic fungi (excluding wood saprotrophs) 
were rare OTU36708, OTU14499 and OTU36708, 
respectively (Supplementary Fig. S9).

Co-occurrence networks showed that bacterial 
keystone taxa were distributed in six modules, 
and fungal keystone taxa were distributed in only 
three modules (Fig. 5a and b; Supplementary Fig. 
S10). Significantly higher stability was observed in 

Figure 1:  Contributions of soil and topographic factors to the differences in relative abundance of (a) keystone bacteria 
and (b) keystone fungi based on correlation and top-ranked regression models. We examined the correlations of these 
values with the differences in soil and topographic factors for each pairwise set of soil samples and identified the major 
predictors. The top bar chart represents the total contributions of soil and topographic factors to explain microbial variation 
(calculated by multiple regression modeling). All of the models had a type 1 error <0.001. Circle size in the bottom 
heatmap represents variable importance, and colors represent Spearman correlations.
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the fungal network than in the bacterial network 
(Wilcox test, P = 2.58e−32, Fig. 5c and d; note higher 
robustness and lower vulnerability both indicate 
higher stability). Similarly, the stability (as inferred 
from AVD) of the fungal community was higher 
than that of the bacterial community (Fig. 5e; higher 
AVD means lower stability). Moreover, correlations 
between the relative abundance of rare taxa and the 
stability of the overall microbial community were 
slightly weaker than those between the relative 
abundance of keystone taxa and the stability of the 
overall microbial community (Supplementary Fig. 
S11).

Associations of keystone microbes and rare 
microbes with tree community composition

After controlling for the influence of soil and 
topographic factors, tree community composition 
within all radii of soil sampling sites was significantly 
correlated with microbial keystone taxa (all 

P ≤ 0.001, Table 1). In contrast, no significant 
associations were observed between tree community 
composition and microbial rare taxa (all P ≥ 0.175, 
Table 1).

DISCUSSION

Keystone, not rare taxa, dominated ecosystem 
structure, functions and stability

Keystone and rare soil microbes can both make 
disproportionate contributions to ecosystem functions 
and community stability in diverse ecosystems 
(Banerjee et al. 2018; Herren and McMahon 2018; 
Lynch and Neufeld 2015; Pester et al. 2010). In 
this study, we found little evidence that rare soil 
microbial taxa contributed disproportionately to 
the structure, function and stability of soil microbial 
communities or to tree community composition. As 
expected, keystone taxa were more influenced by 

Figure 2:  Causal path models for direct and indirect effects of soil properties, topographic factors and microbial groups 
on community structure. (a) for keystone bacteria, (b) for keystone fungi, (c) for rare bacteria and (d) for rare fungi. Solid 
and dashed arrows represent significant and non-significant relationships, respectively. R2 values denote the proportion 
of variance explained for each variable. *** indicates P < 0.001; **, P < 0.01; *, P < 0.05. For keystone taxa, the response 
variables are calculated based on all soil samples (1287), but only 535 soil samples for rare bacteria and 1126 soil samples 
for rare fungi are selected because some samples have no defined rare taxa. That is why keystone and rare taxa are not 
analyzed together in the same model. After the sample size of keystone and rare taxa was unified, the results of SEMs had 
no major change (see Supplementary Information II for details).
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abiotic filtering than rare taxa and contributed more 
to soil community functions. Unexpectedly, in this 
forest ecosystem, keystone taxa also contributed 
more to community stability than rare taxa despite 
the higher diversity of the latter (Supplementary 
Fig. S11). This contrasts with the role played by 
rare taxa in sustaining crop mycobiome stability and 
ecosystem functions (Shade and Gilbert 2015; Xiong 
et al. 2021). As such, these findings raise questions 
over the relative importance of microbial keystone 
and rare taxa in unmanaged forest soils.

As anticipated, the effects of abiotic filtering on 
keystone taxa were greater than those on rare taxa. 
This was clearly illustrated by the indirect influence 
of abiotic factors on microbial community structure 
that was mediated by keystone taxa, but not by rare 
bacteria and fungi (Fig. 2). Ramirez et al. (2018) also 
found no evidence for abiotic filtering on rare soil 

bacteria across a variety of natural and anthropogenic 
habitats at the global scale, although they found that 
rare taxa dominated community structure, which 
contrasts with our results. Such inconsistency is 
likely due to our specific comparison of rare taxa 
with keystone taxa, without overlap between the 
two groups. It is possible that some influential rare 
taxa in the study of Ramirez et al. (2018) would have 
been classified as keystone taxa using our approach.

Keystone taxa constrain community composition 
through their influence on other taxa (Paine 1969). 
In our study site, abiotically filtered keystone taxa 
may interact with other taxa and alter the abundance 
of their partners, thereby regulating the entire soil 
microbial community structure (Banerjee et al. 
2018). Bacterial keystone taxa were more influenced 
by abiotic factors than fungal keystone taxa (Figs 1 
and 2), which might be attributed to the acidity of 

Figure 3:  Keystone operational taxonomic unit (OTU) and their influence on bacterial functions. Bacterial contributions 
of variation in metabolic functions, including (a) carbon metabolism, (b) nitrogen metabolism, (c) phosphorus metabolism, 
(d) sulfur metabolism, (e) methane metabolism, (f) pentose phosphate pathway, (g) butanoate metabolism, (h) glyoxylate 
and dicarboxylate metabolism and (i) propanoate metabolism. The accuracy importance measure was computed for each 
tree and averaged over the forest (1000 trees). Percentage increases in the mean squared error (MSE) of variables were used 
to estimate the importance of these predictors, and higher MSE% values imply more important predictors. Significance 
levels are as follows: *P < 0.05, **P < 0.01 and ***P < 0.001.
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the soil (pH: 2.79–5.79), given that the community 
composition of bacteria is more sensitive to soil pH 
than that of fungi (Bahram et al. 2018; Fierer and 
Jackson 2006; Ni et al. 2021). Additionally, other 
studies have also shown that bacteria are more 
influenced by abiotic factors than fungi in a variety of 
ecosystems (de Dieu Habiyaremye et al. 2021; Millard 
and Singh 2010; Uroz et al. 2016).

Keystone taxa accounted for a larger proportion 
of functions of soil communities, although rare 
taxa did contribute to each function (Figs 3 and 4; 
Supplementary Figs S8 and S9). Keystone taxa have 
strong predictive power for variations in microbial 
community composition (Herren and McMahon 
2018), and here we found keystone taxa explained 
more than five times the percentage of bacterial 
functions than that explained by rare taxa (Fig. 3; 
Supplementary Fig. S8). Microbial keystone taxa are 

positively associated with multiple functional genes 
related to nutrient cycling (Fan et al. 2021). The 
bacterial network with lower robustness and higher 
vulnerability suggested its stability was significantly 
lower than that of fungi (Fig. 5c and d). This might 
be attributed to the discrepancy in the body size of 
bacteria and fungi, which range from 0.2–20 μm 
(Young 2006) to 5–50 μm (Ingold 1971) in diameter, 
respectively.

Generally, diverse subsets of soil microbial taxa 
(e.g. bacterial keystone taxa vs. fungal keystone 
taxa; keystone taxa vs. rare taxa) have different 
life strategies and occupy various ecological niches 
(Pedrós-Alió 2012). Keystone taxa, on the one hand, 
have greater connectivity and play a stabilizing role 
in microbial community composition (Herren and 
McMahon 2018). On the other hand, keystone taxa, 
occupying wider niches than rare taxa, are likely 

Figure 4:  Keystone operational taxonomic unit (OTU) and their influence on fungal functions. Fungal contributions of 
variation in symbiotrophic, pathogenic, and saprotrophic functions, including (a) symbiotrophs, (b) arbuscular mycorrhizal 
fungi, (c) ectomycorrhizal fungi, (d) pathotrophs, (e) plant pathogens, (f) animal pathogens, (g) saprotrophs, (h) soil 
saprotrophs and (i) wood saprotrophs. The accuracy importance measure was computed for each tree and averaged over 
the forest (1000 trees). Percentage increases in the mean squared error (MSE) of variables were used to estimate the 
importance of these predictors, and higher MSE% values imply more important predictors. Significance levels are as 
follows: *P < 0.05 and **P < 0.01.
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more able to utilize the resources that support their 
persistence. Microbial rare taxa, with their narrow 
niche breadth, exhibit greater habitat specificity 
(Jousset et al. 2017; Zhang et al. 2022).

Potential natural forest management 
applications of keystone soil microbes

We also found that tree composition was more 
strongly associated with keystone taxa than with rare 
taxa (Table 1). It is not surprising that soil microbes 
are known to strongly influence plant diversity 

(van der Heijden et al. 2008), resulting in significant 
correlations between aboveground tree communities 
and soil microbes (Barberán et al. 2015). Given that 
keystone taxa comprised relatively few species, if 
these correlations proved to be causal, it would 
simplify management applications analogous to 
those in agroecosystems. In such systems, it has 
been found that microbial keystone groups can be 
utilized to enhance crop productivity by modifying 
the aboveground-underground flow of mineral 
elements in the soil (Wang et al. 2022). Therefore, it is 

Figure 5:  Co-occurrence network of operational taxonomic units (OTUs) for (a) bacterial and (b) fungal communities 
and network stability. The nodes were colored according to modularity, with node size proportional to the number of 
degrees. The edges in the networks depict correlations (red color = positive correlations; blue color = negative correlations). 
Keystone OTUs in the networks are indicated by star symbols. Since the correlations between OTUs that occur only in 
a small number of samples when constructing the networks can result in a high rate of false positives, the networks in 
this study did not contain rare taxa. (c) Robustness measured as the proportion of taxa remained when 50% of the taxa 
were randomly removed from each of the empirical molecular ecological networks, *** indicates P < 0.001. (d) Network 
vulnerability is measured by maximum node vulnerability in each network. (e) Average variation degree values of bacterial 
and fungal communities.

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/article/18/1/rtae105/7908766 by library of east china norm

al university user on 21 O
ctober 2025



Copyedited by: DS

Page 13 of 19

J Plant Ecol, 2025, 18:rtae105

anticipated that a similar effect could be achieved in 
forest ecosystems. Collectively, these findings suggest 
that it could be potential, as with agroecosystems 
(Fan et al. 2021; Wang et al. 2022), to enhance the 
stability and resistance of soil microbial communities 
by regulating relatively few keystone taxa or a subset 
of microbial taxa to maintain or improve ecosystem 
functioning in natural forests. This may involve 
introducing them into forest soils as biofertilizers 
as follows (Zheng et al. 2021): (1) conducting a 
comprehensive analysis of the forest microbiomes 
using high-throughput sequencing techniques to 
elucidate their composition and interactions; (2) 
identifying keystone microbes by employing network 
analysis to reveal those with pivotal roles in forest 
soils; (3) screening for cultivable keystone groups 
that can be manipulated to exert beneficial effects; 
(4) selecting candidate isolates by comparison to the 
identified keystone taxa; (5) producing microbial 
fertilizer and applying it to forest soils (Supplementary 
Fig. S12).

Bacterial keystone taxa mostly belonged to 
Acidobacteria and Proteobacteria, which are among 
the most widely occurring phyla in soil globally 
(Ramirez et al. 2018). Consistent with the global 
pattern (Fierer and Jackson 2006), soil pH was 
strongly influential on keystone bacteria, and it is 
known to regulate the abundance of Acidobacteria 
(Rousk et al. 2010). Proteobacteria have also been 
found to be important in carbon cycling within 
forest ecosystems, as they preferentially consume 
the labile pool of organic carbon (Lladó et al. 
2017). Additionally, certain taxa within the order 
Rhizobiales, involved in nitrogen-fixation within the 
N cycle (Chen et al. 2021), are well-known for their 
beneficial interactions with plants (Erlacher et al. 
2015). In agroecosystems, Rhizobiales and Candidatus 
Solibacter have also been used as biomarkers (Zhang 
and Lv 2020). Fungal keystone taxa mostly belonged 
to Ascomycota, which are typical saprophytic fungi 
(Treseder et al. 2014) capable of degrading lignin-rich 
carbon sources in soils (Ye et al. 2020). Moreover, 

Table 1:  Relationships between keystone and rare microbial taxa with tree community composition

Radius (m) Variable r P

20 Bacterial keystone taxa 0.134 <0.001

Fungal keystone taxa 0.196 <0.001

Bacterial rare taxa 0.004 0.209

Fungal rare taxa 0.004 0.190

15 Bacterial keystone taxa 0.135 0.001

Fungal keystone taxa 0.200 <0.001

Bacterial rare taxa 0.005 0.175

Fungal rare taxa 0.004 0.239

10 Bacterial keystone taxa 0.138 0.001

Fungal keystone taxa 0.199 0.001

Bacterial rare taxa 0.004 0.239

Fungal rare taxa 0.003 0.265

5 Bacterial keystone taxa 0.116 0.001

Fungal keystone taxa 0.177 0.001

Bacterial rare taxa 0.001 0.411

Fungal rare taxa 0.003 0.297

Statistics correspond to partial Mantel tests controlling for differences in soil and topographic factors. Differences among 
tree assemblages and microbial communities estimated using Bray–Curtis distances and differences among abiotic factors 
estimated using Euclidean distance. Radius refers to the distance around the corresponding soil sampling site used to define 
the neighborhood of trees, r is the Mantel test statistic showing the strength and direction of association, and P is the type 
1 error estimate from permutation tests.
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Mortierella is widely distributed in soils (Werner et 
al. 2016) and has been found to associate with both 
plant roots (Jiang et al. 2011) and leaves (Persoh 
2013). While Mortierella is commonly isolated from 
forest litter as a saprophyte, it is now extensively 
used in agricultural soil for decomposition (Ozimek 
and Hanaka 2021). The keystone order Mortierellales 
also plays a critical role in decomposing complex 
organic matter (Wu et al. 2020).

Furthermore, the interaction between bacteria 
and fungi can have a profound impact on plant 
health, with bacterial commensals being able 
to regulate fungal growth (Getzke et al. 2019). 
Specifically, Candidatus Solibacter and Acidibacter, 
identified as two pivotal bacterial keystone genera, 
exert synergistic effects on ectomycorrhizal fungi 
and serve as positive predictors for the relative 
abundance of ectomycorrhizal fungi (Berrios et al. 
2023). In the meanwhile, fungal keystone taxa 
with specific functions can engage in a range of 
interactions with bacteria, profoundly influencing 
the dynamics of bacterial communities. For example, 
fungal hyphae serve as a growth substrate for bacteria 
by releasing exudates as carbon resources (Shi et al. 
2023; Zhang et al. 2021) and facilitate the spread 
of bacteria (Toljander et al. 2006). By mediating 
the dispersal of bacteria, fungal hyphae can also 
facilitate horizontal gene transfer among bacterial 
cells (Ruan et al. 2022), thereby promoting the rapid 
evolution of bacteria (Arnold et al. 2022; Shi et al. 
2023). Therefore, the interactions between bacteria 
and fungi have the potential to shape the diversity 
and stability of microbiomes. This, in turn, ultimately 
influences ecosystem functioning, including soil 
carbon sequestration, plant productivity and 
pathogen suppression (Shi et al. 2023). Additionally, 
it has been noted that the variations in soil properties 
and topographic characteristics have the greatest 
impacts on the saprotrophic keystones (e.g. OTU125 
and OTU106; Fig. 1), which play prominent roles 
in nutrient decomposition and redistribution 
(Hättenschwiler et al. 2005).

The multiple roles played by a relatively small 
number of keystone taxa in this forest raise the 
potential that keystone taxa could be manipulated 
to help maintain tree community diversity and 
regulate soil microbial processes. The identification 
of keystone species in forest soils could inform new 
approaches to sustainably manage forests to help 
ameliorate some impacts of global change (Bonan 
2008). These findings could have the potential to 
guide future conservation priorities.

LIMITATIONS
While stronger associations were observed 
between keystone microbes, rather than rare 
microbes, and the structure and functions of soil 
microbial communities as well as tree composition, 
establishing definitive causality remains a challenge 
inherent in large-scale field investigation studies. 
Moreover, as with any study of this nature, patterns 
of co-occurrence in soil microbial networks must 
be interpreted with caution, as the correlations on 
which they are based might not translate to true 
interactions (Goberna and Verdú 2022). Ideally, 
the roles of keystone taxa inferred from this 
study should be tested using targeted follow-up 
experiments (Banerjee et al. 2018; Faust 2021). 
However, the test process could be complicated 
and time-consuming, such as the validation of the 
‘comammox’ or complete nitrifiers (Costa et al. 
2006; Daims et al. 2015). Moreover, it is currently 
unknown to what degree network stability, 
measured with a single parameter (Yuan et al. 
2021), truly represents the stability of the study 
system. While this is a commonly adopted approach 
in network analysis, a variety of model calculations 
and experimental verifications of community 
stability are still necessary. Although the results 
from the Tiantong subtropical forest plot have 
been validated using another subtropical forest 
plot (Baishanzu), it is important to note that these 
findings may be limited to the specific forest type 
and environmental conditions. Therefore, future 
research should be conducted to test the universality 
and representativeness of these findings, including 
a wider range of forest types.
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